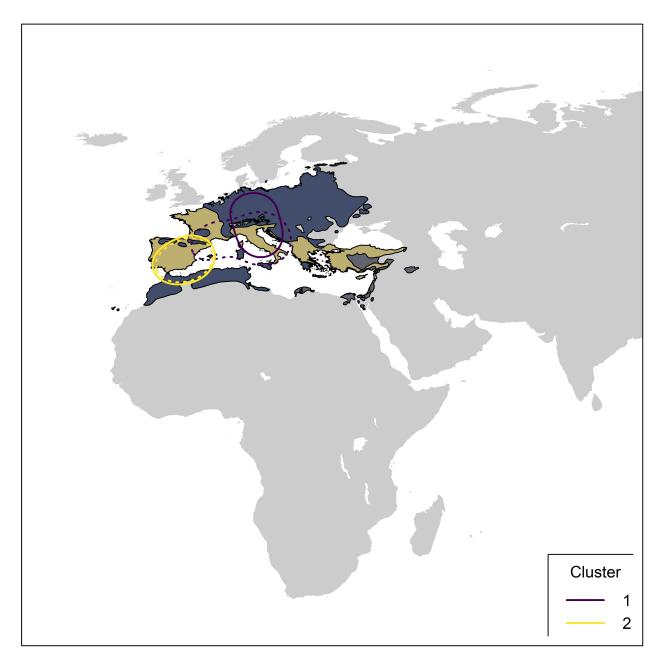
Migratory connectivity analysis

by EURING Migration Atlas

Serinus serinus (EURING code 16400)


1.1 Connectivity between individuals

The analysis evaluated 672 individuals (1344 encounters) filtered from a total of 33377 records in the EURING databank which were considered for the Atlas. The species shows a significant connectivity from clustering, with a number of first-level clusters = 2 (Table 16400-1; Figure 16400-1).

Table 16400-1. Results from the migratory connectivity analysis. For each cluster, the degree of connectivity (r_M) , its statistical significance (p-value) and 95% confidence interval limits are shown. When the p-value is less than or equal to 0.1, the degree of clustering structure (oasw) and the best number of clusters identified are reported.

			Migratory		Lower 95%	Upper 95%	Best	
Cluster	Level of	Ν	$\operatorname{connectivity}$	p-	confidence	confidence	number of	
name	clustering	individual	s (r_M)	value	limit	limit	clusters	oasw
0	0	672	0.851	0.001	0.809	0.888	2	0.724
1	1	119	0.646	0.001	0.524	0.770	3	0.691
2	1	553	0.814	0.001	0.723	0.904	9	0.685
11	2	38	-0.038	0.681	-0.058	0.153	-	-
12	2	19	-	-	-	-	-	-
13	2	62	0.981	0.001	0.834	1.000	2	0.930
21	2	6	-	-	-	-	-	-
22	2	41	0.700	0.001	0.462	0.882	9	0.639
23	2	101	0.935	0.001	0.842	1.000	9	0.759
24	2	199	0.363	0.016	0.165	0.863	9	0.807
25	2	34	0.777	0.001	0.642	0.949	8	0.752
26	2	81	0.990	0.001	0.962	1.000	9	0.934
27	2	66	0.923	0.001	0.782	1.000	9	0.940
28	2	9	-	-	-	-	-	-
29	2	16	-	-	-	-	-	-
131	3	1	-	-	-	-	-	-
132	3	61	0.912	0.001	0.806	1.000	8	0.913
221	3	15	-	-	-	-	-	-
222	3	9	-	-	-	-	-	-
223	3	9	-	-	-	-	-	-
224	3	1	-	-	-	-	-	-
225	3	2	-	-	-	-	-	-
226	3	1	-	-	-	-	-	-
227	3	1	-	-	-	-	-	-
228	3	2	-	-	-	-	-	-
229	3	1	-	-	-	-	-	-
231	3	10	-	-	-	-	-	-

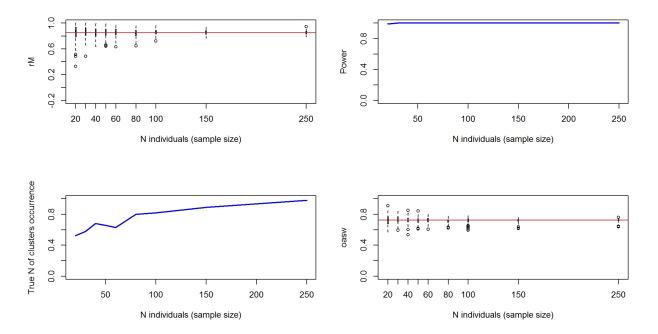

	Best	Upper 95%	Lower 95%		Migratory			
	number of	confidence	confidence	p-	connectivity		Level of	Cluster
oasw	clusters	limit	limit	value	s (r_M)	individuals	clustering	name
-	-	-	-	-	-	5	3	232
-	-	-	-	-	-	16	3	233
0.95	3	1.000	1.000	0.001	1.000	22	3	234
-	-	-	-	-	-	1	3	235
-	-	-	-	-	-	17	3	236
-	-	-	-	-	-	18	3	237
-	-	-	-	-	-	7	3	238
-	-	-	-	-	-	5	3	239
-	-	-	-	-	-	1	3	241
-	-	-	-	-	-	17	3	242
-	-	-	-	-	-	1	3	243
0.95!	9	0.991	0.866	0.001	0.898	143	3	244
0.958	2	1.000	1.000	0.045	1.000	24	3	245
-	-	-	-	-	-	5	3	246
-	-	-	-	-	-	5	3	247
-	-	-	-	-	-	2	3	248
-	-	-	-	-	-	1	3	249
-	-	-	-	-	-	1	3	251
-	-	-	-	-	-	7	3	252
-	-	-	-	-	-	1	3	253
-	-	-	-	-	-	16	3	254
-	-	-	-	-	-	6	3	255
-	-	-	-	-	-	1	3	256
-	-	-	-	-	-	1	3	257
-	_	-	-	_	-	1	3	258
-	-	-	-	-	-	3	3	261
-	_	_	-	_	-	1	3	262
_	-	_	-	_	-	4	3	263
_	-	_	-	_	-	5	3	264
_	-	_	-	_	-	3	3	265
_	-	_	-	_	-	12	3	266
_	-	-	-	_	-	45	3	267
_	-	-	-	_	-	3	3	268
-	_	_	_	_	_	5	3	269
-	_	_	_	_	_	$\overset{\circ}{2}$	3	$\frac{200}{271}$
-	_	_	_	_	_	48	3	272
_	_	_	_	_	_	4	3	273
_	_	_	-	_	-	2	3	$273 \\ 274$
_	_	-	-	_	_	$\frac{2}{2}$	3	$274 \\ 275$
_	-	-	-	_	-	$\frac{2}{4}$	3	$275 \\ 276$
_	-	_	_	_	-	4 2	3	$270 \\ 277$
-	-	-	-	-	-	1	3	$277 \\ 278$
-	-	-	-	-	-	1	3 3	$278 \\ 279$

Figure 16400-1. Map showing 95% kernel contours of of first-level clusters identified by the migratory connectivity analysis, if any, or 95% kernel contours of all encounters, in case of no clustering structure. Solid lines indicate the clusters in the breeding range, dotted lines those in the non-breeding range. Different contour colours correspond to different clusters, as reported in legend. The species distribution range is also shown (breeding range: blue; non-breeding range: dark grey; resident range: beige; from BirdLife International, 2019).

1.2 Sensitivity analysis

Results of power analysis and validation. Analyses at the species level were re-run on subsamples of individuals of decreasing size (100 repetitions per subsample size), according to simple random sampling of individuals (Figure 16400-2) and stratified sampling of individuals within the breeding range (Figure 16400-3) and the non breeding range (Figure 16400-4). For stratified sampling, we selected individuals with a

probability inversely proportional to the number of observation in each country. Figures below report the results of the procedure.

Figure 16400-2. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis (i.e. proportion of times the analyses on the subset of individuals was significant). Bottom left: Proportion of times the analysis provides the observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

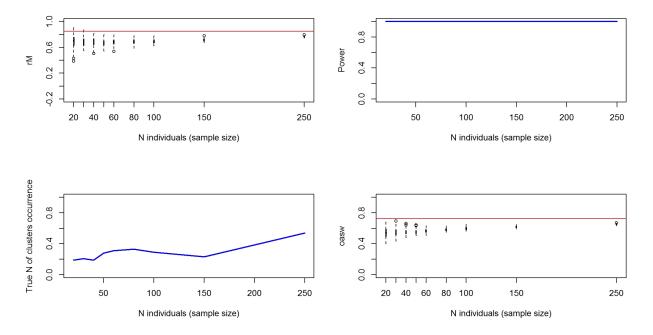
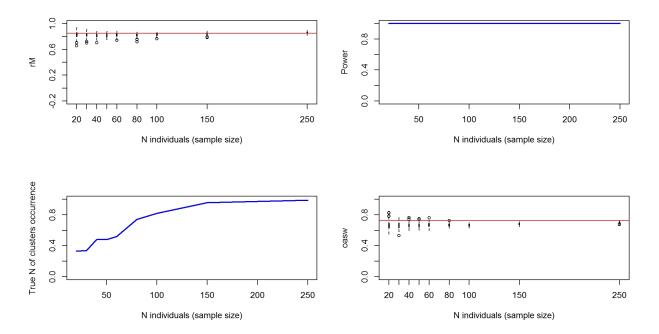



Figure 16400-3. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis. Bottom left: Proportion of times the analysis provides the

observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

Figure 16400-4. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis. Bottom left: Proportion of times the analysis provides the observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

The comparison between the bootstrapped distribution of r_M values from live recaptures and dead recoveries is significant (p < 0.001); Figure 16400-5).

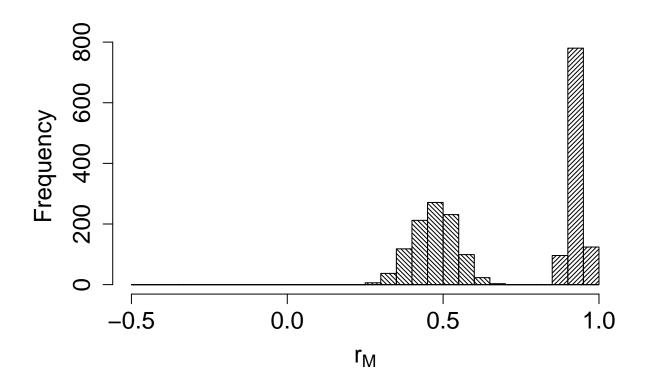


Figure 16400-5. Comparison between the bootstrapped distributions of connectivity value for alive recaptures (filling lines with angle= 45°) and dead recoveries (filling lines with angle= 375°).

2. Connectivity between pre-defined regions

The species shows high connectivity (MC = 0.869; MC = 0.869 when adjusted for absolute abundance) between 5 breeding regions and 4 non breeding regions (Table 16400-2; Figure 16400-6).

Table 16400-2.	Transition probabilities	between pre-define	ed regions.	Estimated	abundance	(number of
individuals) in ea	ch breeding region is also	reported.				

Breeding region	Abundance	Non breeding region	Transition probability	
Central Europe	2917200	South-central Europe	0.339	
Central Europe	2917200	South-west Europe	0.643	
Central Europe	2917200	West Europe	0.018	
South-central Europe	3289908	South-central Europe	1.000	
South-east Europe	3359560	South-east Europe	1.000	
South-west Europe	42021625	South-west Europe	1.000	
West Europe	432419	South-west Europe	1.000	

Figure 16400-6. Map showing pre-defined regions in different colours, with black arrows linking centroids of individual encounters in different regions. Arrow width is proportional to transition probability.

Reference

BirdLife International and Handbook of the Birds of the World (2019). Bird species distribution maps of the world. Version 2019.1. Available at http://datazone.birdlife.org/species/requestdis.