Migratory connectivity analysis

by EURING Migration Atlas

Larus fuscus (EURING code 05910)

1.1 Connectivity between individuals

The analysis evaluated 5015 individuals (10030 encounters) filtered from a total of 352037 records in the EURING databank which were considered for the Atlas. The species shows a significant connectivity from pattern transference (Table 05910-1; Figure 05910-1).

Table 05910-1. Results from the migratory connectivity analysis. For each cluster, the degree of connectivity (r_M) , its statistical significance (p-value) and 95% confidence interval limits are shown. When the p-value is less than or equal to 0.1, the degree of clustering structure (oasw) and the best number of clusters identified are reported.

			Migratory		Lower 95%	Upper 95%	Best	
Cluster	Level of	N	connectivity	p-	confidence	confidence	number of	
name	clustering	individuals	$(r_{ m M})$	value	\lim	limit	clusters	oasw
0	0	5015	0.264	0.001	0.226	0.301	2	0.482

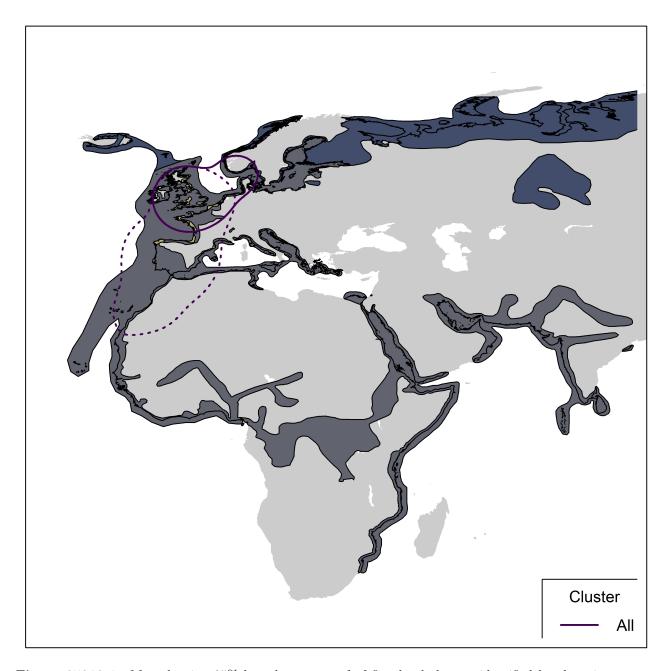
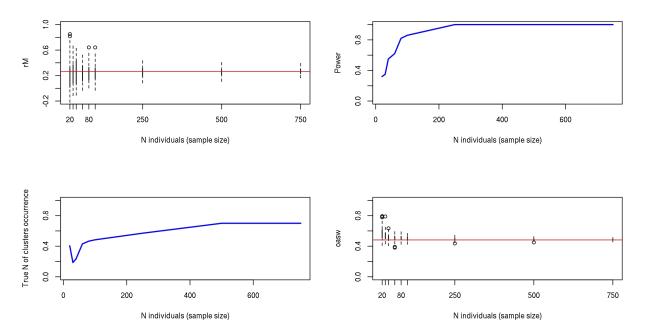



Figure 05910-1. Map showing 95% kernel contours of of first-level clusters identified by the migratory connectivity analysis, if any, or 95% kernel contours of all encounters, in case of no clustering structure. Solid lines indicate the clusters in the breeding range, dotted lines those in the non-breeding range. Different contour colours correspond to different clusters, as reported in legend. The species distribution range is also shown (breeding range: blue; non-breeding range: dark grey; resident range: beige; from BirdLife International, 2019).

1.2 Sensitivity analysis

Results of power analysis and validation. Analyses at the species level were re-run on subsamples of individuals of decreasing size (100 repetitions per subsample size), according to simple random sampling of individuals (Figure 05910-2) and stratified sampling of individuals within the breeding range (Figure 05910-3) and the non breeding range (Figure 05910-4). For stratified sampling, we selected individuals with a

probability inversely proportional to the number of observation in each country. Figures below report the results of the procedure.

Figure 05910-2. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis (i.e. proportion of times the analyses on the subset of individuals was significant). Bottom left: Proportion of times the analysis provides the observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

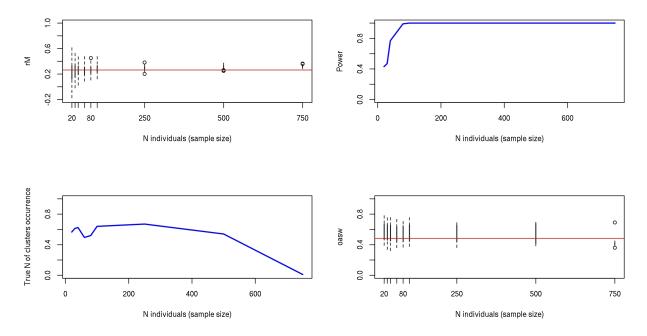
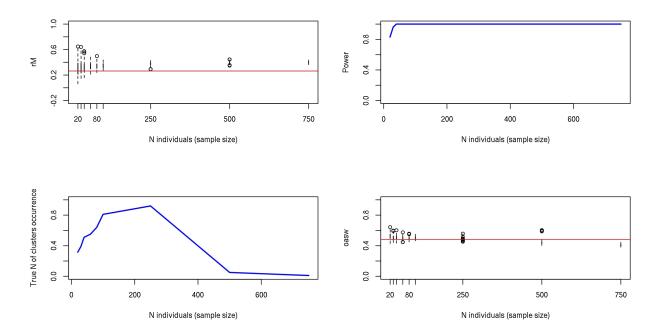



Figure 05910-3. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis. Bottom left: Proportion of times the analysis provides the

observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

Figure 05910-4. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis. Bottom left: Proportion of times the analysis provides the observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

The comparison between the bootstrapped distribution of r_M values from live recaptures and dead recoveries is significant (p = 0.003); Figure 05910-5).

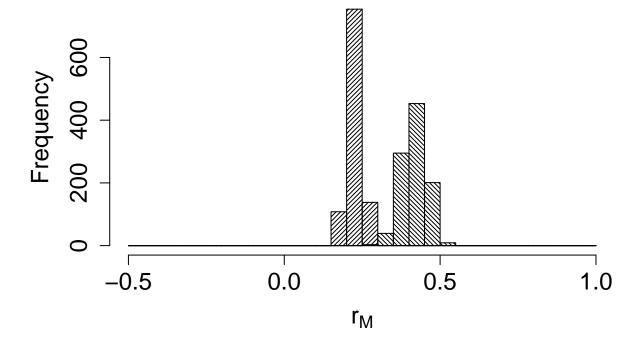


Figure 05910-5. Comparison between the bootstrapped distributions of connectivity value for alive recaptures (filling lines with angle=45°) and dead recoveries (filling lines with angle=375°).

2. Connectivity between pre-defined regions

The species shows low connectivity (MC = 0.13; MC = 0.13 when adjusted for absolute abundance) between 5 breeding regions and 13 non breeding regions (Table 05910-2; Figure 05910-6).

Table 05910-2. Transition probabilities between pre-defined regions. Estimated abundance (number of individuals) in each breeding region is also reported.

Breeding region	Abundance	Non breeding region	Transition probability
Central Europe	78006	Central Europe	0.020
Central Europe	78006	North Africa	0.027
Central Europe	78006	North-west Europe	0.095
Central Europe	78006	South-central Europe	0.007
Central Europe	78006	South-west Europe	0.646
Central Europe	78006	West Europe	0.204
North Europe	179604	Arabian peninsula	0.002
North Europe	179604	Central Africa	0.009
North Europe	179604	Central Europe	0.007
North Europe	179604	East Africa	0.021
North Europe	179604	East Europe	0.005
North Europe	179604	North Africa	0.337
North Europe	179604	North Europe	0.051

Breeding region	Abundance	Non breeding region	Transition probability
North Europe	179604	North-west Europe	0.030
North Europe	179604	South-central Europe	0.027
North Europe	179604	South-east Europe	0.001
North Europe	179604	South-west Europe	0.404
North Europe	179604	West Africa	0.052
North Europe	179604	West Europe	0.052
North-west Europe	318478	North Africa	0.136
North-west Europe	318478	North-west Europe	0.325
North-west Europe	318478	South-west Europe	0.479
North-west Europe	318478	West Africa	0.010
North-west Europe	318478	West Europe	0.049
South-west Europe	2875	South-west Europe	1.000
West Europe	258589	North Africa	0.075
West Europe	258589	North-west Europe	0.105
West Europe	258589	South-west Europe	0.615
West Europe	258589	West Europe	0.204

Figure 05910-6. Map showing pre-defined regions in different colours, with black arrows linking centroids of individual encounters in different regions. Arrow width is proportional to transition probability.

Reference

BirdLife International and Handbook of the Birds of the World (2019). Bird species distribution maps of the world. Version 2019.1. Available at http://datazone.birdlife.org/species/requestdis.