Migratory connectivity analysis

by EURING Migration Atlas

Somateria mollissima (EURING code 02060)

1.1 Connectivity between individuals

The analysis evaluated 1182 individuals (2364 encounters) filtered from a total of 113566 records in the EURING databank which were considered for the Atlas. The species shows a significant connectivity from clustering, with a number of first-level clusters = 3 (Table 02060-1; Figure 02060-1).

Table 02060-1. Results from the migratory connectivity analysis. For each cluster, the degree of connectivity (r_M) , its statistical significance (p-value) and 95% confidence interval limits are shown. When the p-value is less than or equal to 0.1, the degree of clustering structure (oasw) and the best number of clusters identified are reported.

			Migratory	_	Lower 95%	Upper 95%	Best	
Cluster	Level of	N	connectivity	p-	confidence	confidence	number of	
name	clustering	individuals	$(r_{\rm M})$	value	limit	limit	clusters	oasw
0	0	1182	0.874	0.001	0.848	0.899	3	0.787
1	1	803	0.171	0.001	0.119	0.235	2	0.694
2	1	328	0.577	0.001	0.298	0.798	7	0.717
3	1	51	0.929	0.001	0.856	0.999	8	0.811
11	2	725	0.309	0.001	0.242	0.400	3	0.398
12	2	78	0.569	0.002	-0.077	0.839	2	0.700
21	2	1	-	-	-	-	-	-
22	2	83	-0.051	0.687	-0.109	0.021	-	-
23	2	44	0.432	0.001	0.184	0.684	2	0.627
24	2	178	0.610	0.001	-0.110	0.818	9	0.724
25	2	16	-	-	-	-	-	-
26	2	2	-	-	-	-	-	-
27	2	4	-	-	-	-	-	-
31	2	26	0.808	0.001	0.736	0.900	3	0.676
32	2	4	-	-	-	-	-	-
33	2	6	-	-	-	-	-	-
34	2	5	-	-	-	-	-	-
35	2	7	-	-	-	-	-	-
36	2	1	-	-	-	-	-	-
37	2	1	-	-	-	-	-	-
38	2	1	-	-	-	-	-	-
121	3	72	0.016	0.348	-0.124	0.199	-	-
122	3	6	-	-	-	-	-	-
231	3	37	-0.061	0.537	-0.115	0.140	-	-
232	3	7	-	-	-	-	-	-
241	3	113	-0.040	0.962	-0.067	-0.021	-	-
242	3	31	0.246	0.121	-0.104	0.602	-	-

			Migratory		Lower 95%	Upper 95%	Best	
Cluster	Level of	N	connectivity	p-	confidence	confidence	number of	
name	clustering	individuals	$ m s$ $ m (r_M)$	value	\lim	\lim	clusters	oasw
243	3	10	-	-	-	-	-	_
244	3	6	-	-	-	-	-	-
245	3	12	-	-	-	-	-	-
246	3	3	-	-	-	-	-	-
247	3	1	-	-	-	-	-	-
248	3	1	-	-	-	-	-	-
249	3	1	-	-	-	-	-	-
311	3	1	-	-	-	-	-	-
312	3	10	-	-	-	-	-	-
313	3	15	-	-	-	-	-	

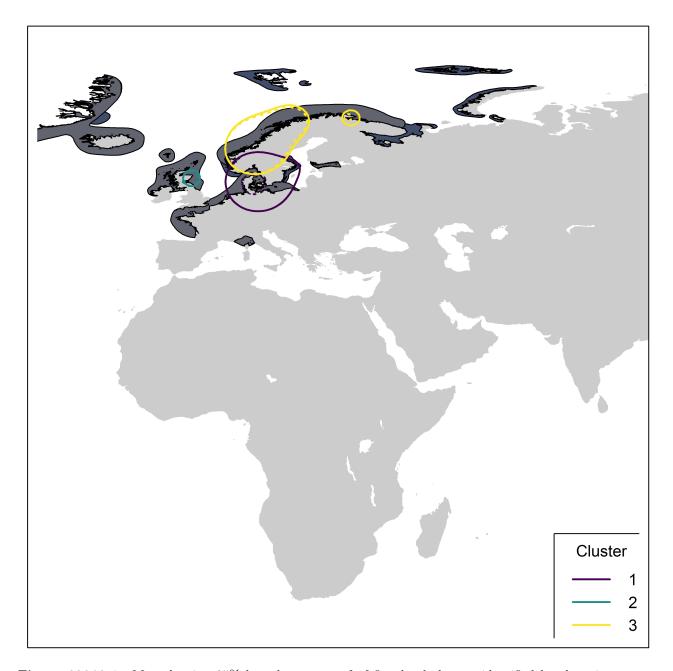
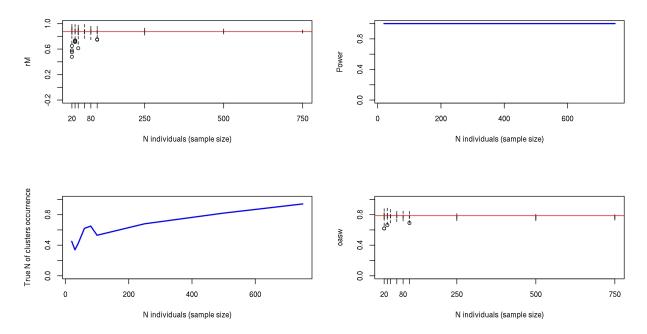



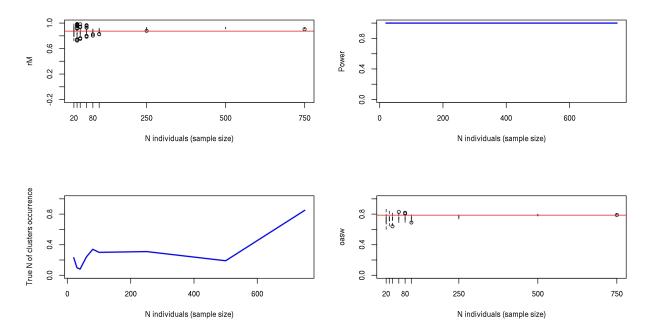
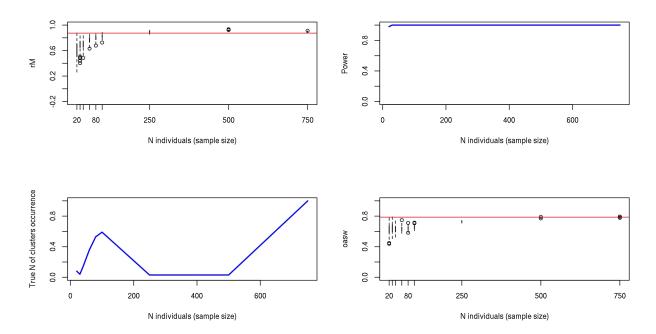
Figure 02060-1. Map showing 95% kernel contours of of first-level clusters identified by the migratory connectivity analysis, if any, or 95% kernel contours of all encounters, in case of no clustering structure. Solid lines indicate the clusters in the breeding range, dotted lines those in the non-breeding range. Different contour colours correspond to different clusters, as reported in legend. The species distribution range is also shown (breeding range: blue; non-breeding range: dark grey; resident range: beige; from BirdLife International, 2019).

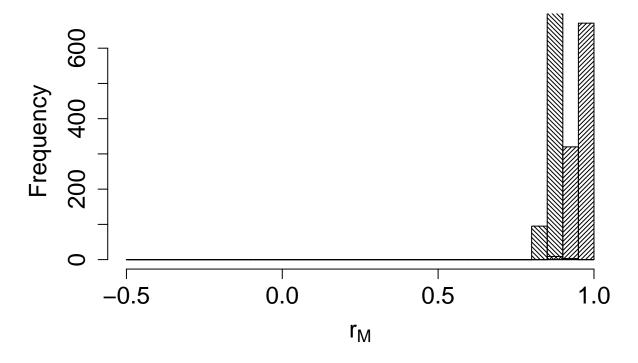
1.2 Sensitivity analysis

Results of power analysis and validation. Analyses at the species level were re-run on subsamples of individuals of decreasing size (100 repetitions per subsample size), according to simple random sampling of individuals (Figure 02060-2) and stratified sampling of individuals within the breeding range (Figure 02060-3) and the non breeding range (Figure 02060-4). For stratified sampling, we selected individuals with a

probability inversely proportional to the number of observation in each country. Figures below report the results of the procedure.

Figure 02060-2. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis (i.e. proportion of times the analyses on the subset of individuals was significant). Bottom left: Proportion of times the analysis provides the observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.


Figure 02060-3. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis. Bottom left: Proportion of times the analysis provides the

observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

Figure 02060-4. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis. Bottom left: Proportion of times the analysis provides the observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

The comparison between the bootstrapped distribution of r_M values from live recaptures and dead recoveries is significant (p = 0.012); Figure 02060-5).

Figure 02060-5. Comparison between the bootstrapped distributions of connectivity value for alive recaptures (filling lines with angle=45°) and dead recoveries (filling lines with angle=375°).

2. Connectivity between pre-defined regions

The species shows moderate/high connectivity (MC = 0.604; MC = 0.604 when adjusted for absolute abundance) between 3 breeding regions and 4 non breeding regions (Table 02060-2; Figure 02060-6).

Table 02060-2. Transition probabilities between pre-defined regions. Estimated abundance (number of individuals) in each breeding region is also reported.

Breeding region	Abundance	Non breeding region	Transition probability
East Europe	97800	North Europe	1.000
North Europe	832100	Central Europe	0.030
North Europe	832100	North Europe	0.950
North Europe	832100	North-west Europe	0.001
North Europe	832100	West Europe	0.019
North-west Europe	654320	North Europe	0.009
North-west Europe	654320	North-west Europe	0.991

Figure 02060-6. Map showing pre-defined regions in different colours, with black arrows linking centroids of individual encounters in different regions. Arrow width is proportional to transition probability.

Reference

BirdLife International and Handbook of the Birds of the World (2019). Bird species distribution maps of the world. Version 2019.1. Available at http://datazone.birdlife.org/species/requestdis.