Migratory connectivity analysis

by EURING Migration Atlas

Aythya ferina (EURING code 01980)

1.1 Connectivity between individuals

The analysis evaluated 552 individuals (1104 encounters) filtered from a total of 24377 records in the EURING databank which were considered for the Atlas. The species shows a significant connectivity from pattern transference (Table 01980-1; Figure 01980-1).

Table 01980-1. Results from the migratory connectivity analysis. For each cluster, the degree of connectivity (r_M) , its statistical significance (p-value) and 95% confidence interval limits are shown. When the p-value is less than or equal to 0.1, the degree of clustering structure (oasw) and the best number of clusters identified are reported.

			Migratory		Lower 95%	Upper 95%	Best	
Cluster	Level of	Ν	connectivity	p-	confidence	confidence	number of	
name	clustering	individuals	(r_M)	value	limit	limit	clusters	oasw
0	0	552	0.193	0.001	0.121	0.268	5	0.415

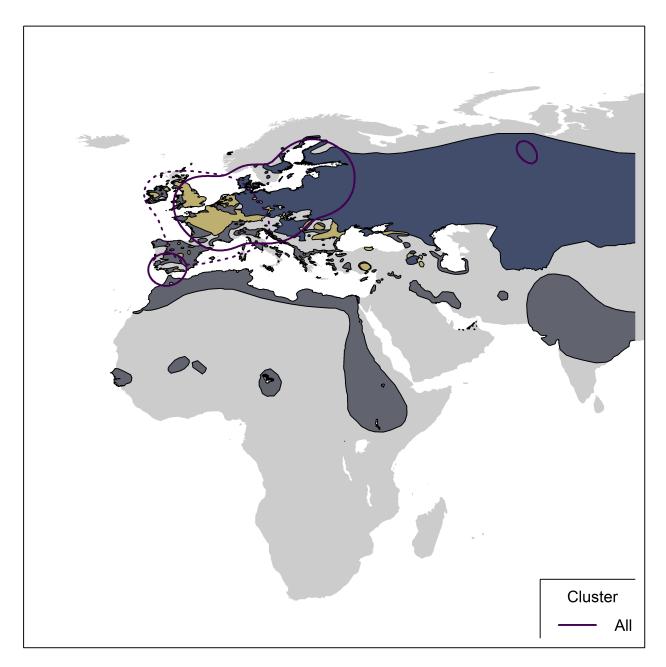
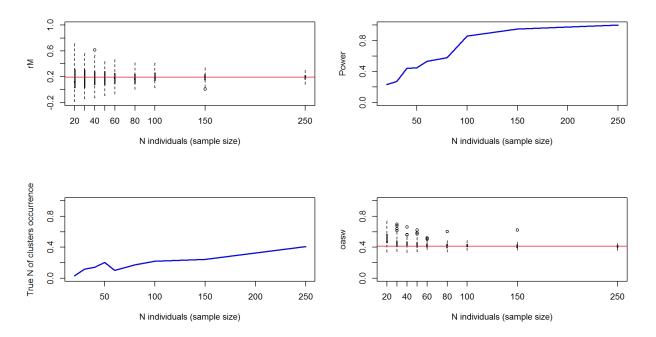



Figure 01980-1. Map showing 95% kernel contours of of first-level clusters identified by the migratory connectivity analysis, if any, or 95% kernel contours of all encounters, in case of no clustering structure. Solid lines indicate the clusters in the breeding range, dotted lines those in the non-breeding range. Different contour colours correspond to different clusters, as reported in legend. The species distribution range is also shown (breeding range: blue; non-breeding range: dark grey; resident range: beige; from BirdLife International, 2019).

1.2 Sensitivity analysis

Results of power analysis and validation. Analyses at the species level were re-run on subsamples of individuals of decreasing size (100 repetitions per subsample size), according to simple random sampling of individuals (Figure 01980-2) and stratified sampling of individuals within the breeding range (Figure 01980-3) and the non breeding range (Figure 01980-4). For stratified sampling, we selected individuals with a

probability inversely proportional to the number of observation in each country. Figures below report the results of the procedure.

Figure 01980-2. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis (i.e. proportion of times the analyses on the subset of individuals was significant). Bottom left: Proportion of times the analysis provides the observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

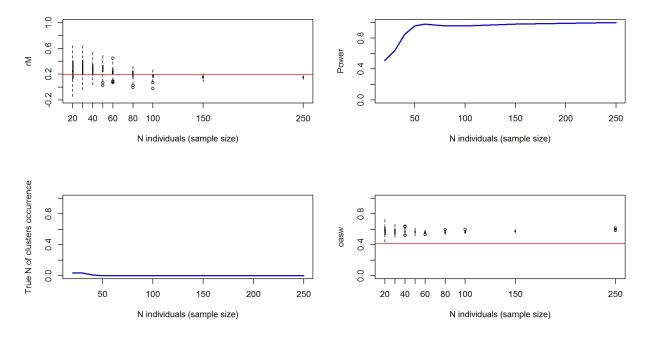
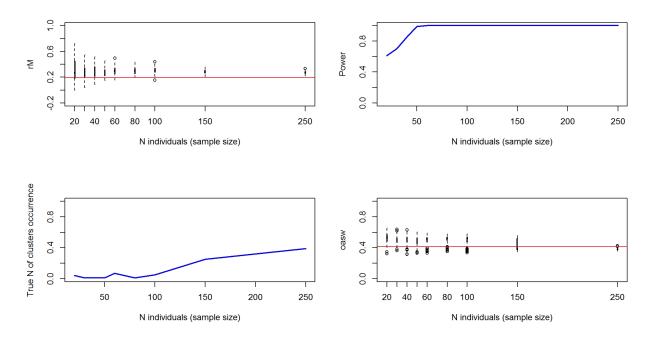



Figure 01980-3. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis. Bottom left: Proportion of times the analysis provides the

observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

Figure 01980-4. Top left: simulated distribution (boxplots) and observed value (red line) of connectivity. Top right: Simulated power of the analysis. Bottom left: Proportion of times the analysis provides the observed best number of cluster. Bottom right: simulated distribution (boxplots) and observed value (red line) of clustering intensity.

The comparison between the bootstrapped distribution of r_M values from live recaptures and dead recoveries is not significant (p = 0.655); Figure 01980-5).

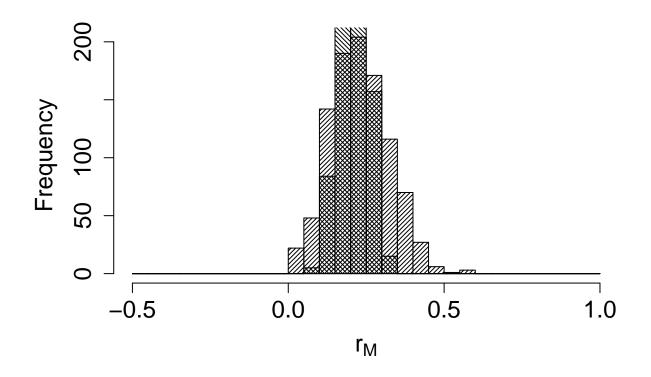


Figure 01980-5. Comparison between the bootstrapped distributions of connectivity value for alive recaptures (filling lines with angle= 45°) and dead recoveries (filling lines with angle= 375°).

2. Connectivity between pre-defined regions

The species shows low/moderate connectivity (MC = 0.226; MC = 0.225 when adjusted for absolute abundance) between 8 breeding regions and 8 non breeding regions (Table 01980-2; Figure 01980-6).

Table 01980-2. Transition probabilities between pre-defined regions. Estimated abundance (number of individuals) in each breeding region is also reported.

Breeding region	Abundance	Non breeding region	Transition probability	
Central Europe	91646	Central Europe	0.280	
Central Europe	91646	North Africa	0.017	
Central Europe	91646	North-west Europe	0.136	
Central Europe	91646	South-central Europe	0.085	
Central Europe	91646	South-east Europe	0.008	
Central Europe	91646	South-west Europe	0.119	
Central Europe	91646	West Europe	0.356	
East Europe	270700	Central Europe	0.119	
East Europe	270700	North Europe	0.007	
East Europe	270700	North-west Europe	0.318	
East Europe	270700	South-central Europe	0.014	
East Europe 270		South-east Europe	0.007	
East Europe	270700	South-west Europe	0.091	

Breeding region	Abundance	Non breeding region	Transition probability	
East Europe	270700	West Europe	0.444	
North Europe	28775	North-west Europe	0.375	
North Europe	28775	South-west Europe	0.062	
North Europe	28775	West Europe	0.562	
North-west Europe	980	North Africa	0.025	
North-west Europe	980	North-west Europe	0.675	
North-west Europe	980	South-west Europe	0.025	
North-west Europe	980	West Europe	0.275	
South-central Europe	6500	South-central Europe	0.333	
South-central Europe	6500	South-west Europe	0.667	
South-east Europe	54093	Central Europe	1.000	
South-west Europe	17015	North Africa	0.136	
South-west Europe	17015	North-west Europe	0.045	
South-west Europe	17015	South-central Europe	0.045	
South-west Europe	17015	South-west Europe	0.636	
South-west Europe	17015	West Europe	0.136	
West Europe	13072	Central Europe	0.180	
West Europe	13072	North-west Europe	0.080	
West Europe	13072	South-east Europe	0.020	
West Europe	13072	South-west Europe	0.220	
West Europe	13072	West Europe	0.500	

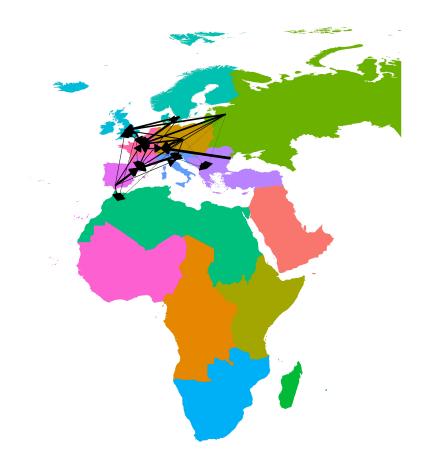


Figure 01980-6. Map showing pre-defined regions in different colours, with black arrows linking centroids of individual encounters in different regions. Arrow width is proportional to transition probability.

Reference

BirdLife International and Handbook of the Birds of the World (2019). Bird species distribution maps of the world. Version 2019.1. Available at http://datazone.birdlife.org/species/requestdis.